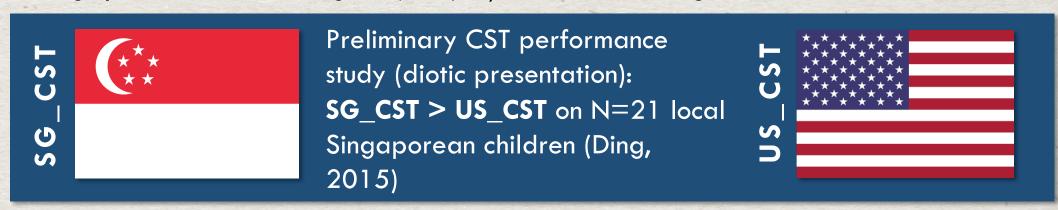


QUALITATIVE ANALYSIS OF THE SINGAPORE-ADAPTED COMPETING SENTENCES TEST PERFORMANCE FOR SINGAPOREAN CHILDREN FROM 7 TO 9 YEARS OLD

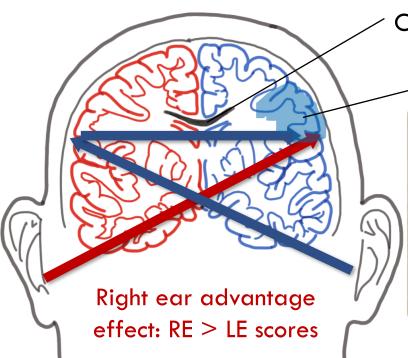

Background

Competing Sentences Test

- Competing Sentences Test (CST)
 - Dichotic Listening Task (DLT)
 - Measures binaural separation ability (Farah, Brown, & Keith, 2013)
 - Part of CAPD Test Battery
- Speech-based test → Language and Accent appropriate CST material
 - Linguistically loaded dichotic task, accent effects

(Bent & Atagi, 2015; Mukari, Keith, Tharpe, & Johnson, 2006; Newton & Ridgway, 2016; Rosenberg, 1998)

Singapore Standard English (SSE) =/= American English


Background

Competing Sentences Test

Right Ear:

Competing Sentence (50dB HL)

"It was a long ride by car"

Corpus callosum

Language dominant hemisphere

Left Ear:

Target Sentence (35 dB HL)

"I thought we would never get there"

Competing Sentence List					D. Right	D. Left
Target	I thought	she will we would	never	get there		7.5
Competing	It was	a long	ride	by car		

Introduction

Normative Data

CST is a norm-referenced test

- Clinical interpretation based on age-based normative data (Muskiek, Bellis & Chermak, 2005; Tomlin & Rance, 2016)
- Age groups to take into account ongoing neural maturation that is most apparent in childhood (corpus callosum) (Luders, Thompson and Toga, 2010)
- Trend of decreasing REA with age

Age (years)	years) Left ear			REA
7;0 – 7;11	35	80		45
8;0 - 8;11	39	82		43
9;0 - 9;11	74	90		16
10;0 – 10;11	85	90		15
11;0 – 11;11	90	90		0
≥ 12	90	90	↓	0

corpus callosum

CST cut-off scores based on normative data from the US population (T. J Bellis, 2003)

Introduction

Aims and Hypothesis of Study

Aims Of Study:

- To explore the suitability of using the Singapore adapted Competing Sentences Test (SG_CST) on local Singaporean children between 7 to 12 years old as part of the battery of tests used in the assessment of Central Auditory Processing Disorder (CAPD).
- If deemed appropriate, normative data would be obtained on a group of Singaporean children from 7 to 12 years old for the SG_CST test.

Hypotheses:

- 1. Local Singaporean children will perform better in the SG_CST as compared to the US_CST.
- 2. Left ear scores are expected to improve with age, showing a REA trend that diminishes with increasing age.

Methodology

Procedures done

Test Material Preparation

 Editing of SG_CST for dichotic presentation

Parent Interview

- Declaration of child's learning and development status
- Semi-structured interview of child's academic and language status

Basic Audiometry Screening

- Normal peripheral hearing status
- ≤ 20dB HL AC thresholds from 500 to 8000Hz bilaterally
- Type A tympanograms b/I

Methodology

Procedures done

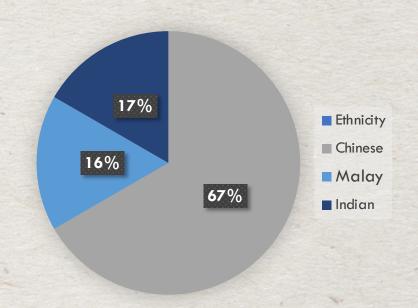
Auditory Memory

- Auditory Working Memory
- TAPS- 3rd Edition
- > 16th
 percentile for
 <u>Sentence</u> and
 <u>Word</u> Memory
 subtests

SG_CST

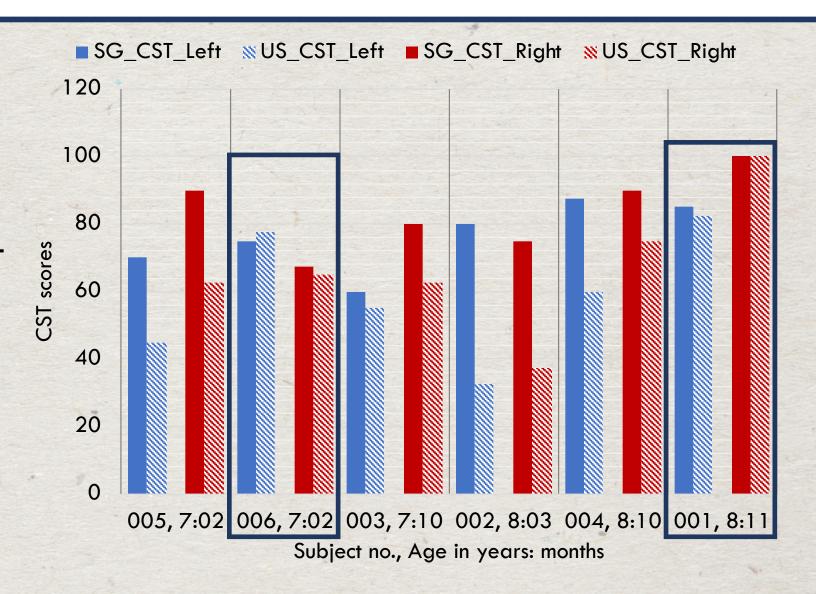
- Randomise initial directed ear condition
- Directed left ear, right ear scores and REA obtained

US_CST


- Same initial directed ear as SG_CST
- DL, DR, REA scores
- Target sentence differed for all conditions

Subject Demographics

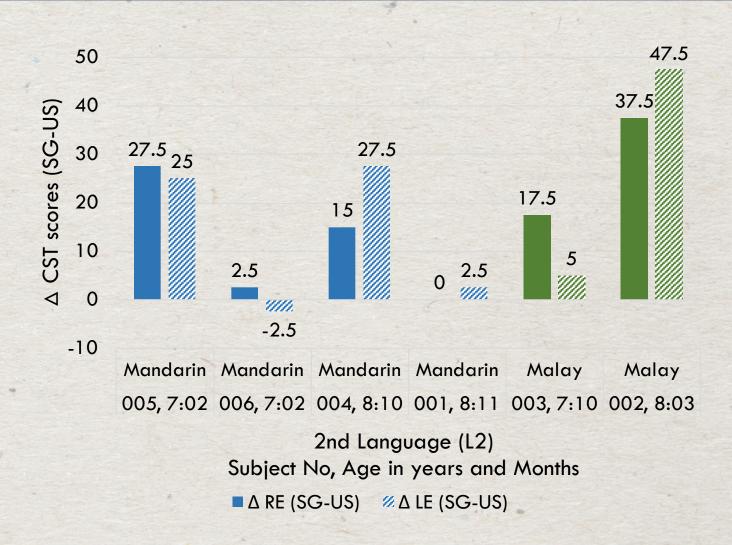
- **N=6** local Singaporean children enrolled in MOE-registered primary schools, from 7 to 8 years old, with a mix of Chinese, Indian and Malay ethnicity individuals
- · Word of mouth recruitment method


Subject No.	Age (Years: Months)	Gender	Ethnicity	L1	L2
001	8:11	F	Chinese	English	Mandarin
004	8:10	M	Chinese	English	Mandarin
002	8:3	M	Indian	English	Malay
003	7:10	M	Malay	English	Malay
005	7:2	M	Chinese	English	Mandarin
006	7:2	F	Chinese	English	Mandarin

Ethnicities of Subjects

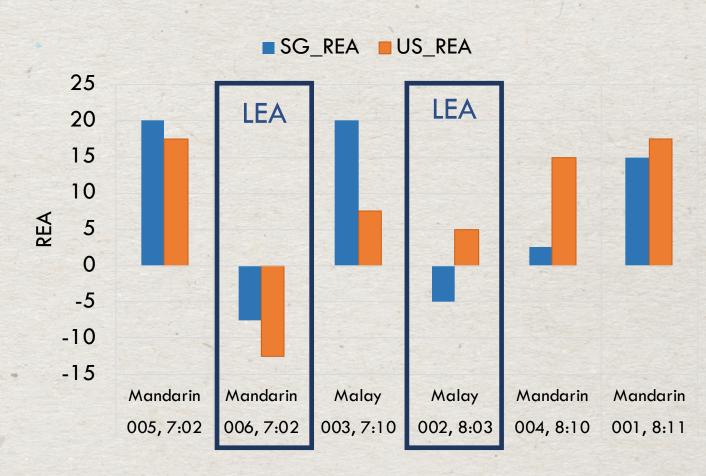
Individual CST Scores

Overall, local
 Singaporean
 children from 7 to 9
 years old performed
 <u>better</u> in the SG_CST
 than US_CST task



Difference in CST (Δ CST) performance in relation to 2^{nd} Language (L2)

Difference in CST (△CST)
 performance highly
 variable


$$\Delta CST = SG_CST - US_CST$$

 No clear correlation between change in performance and L2

Right Ear Advantage (REA) scores with increasing age

- No clear trend of decreasing REA with increasing age
- No clear correlation between L2 (Mandarin vs Malay) and degree of REA
- LEA observed in some subjects (Subject no. 006, Subject no. 002)

2nd Language (L2)
Subject no., Age in years: months

Individual Case Studies

Subject No. 006

Profile	Female, 7;2 years old, Chinese ethnicity, L2: Mandarin			
Language and Academic Bg	Doing well in school Reported to perform better in Mandarin (MTL) subject than in English (L1)			
Screening Results	Basic Audiometry: Pass, AM Word: 99 th Percentile, AM Sentence: 84 th Percentile			
CST scores	SG_CST	Directed Left	75	
		Directed Right	67.5	
		REA	- 7.5	
	US_CST	Directed Left	77.5	
		Directed Right	65	
		REA	-12.5	

Individual Case Studies

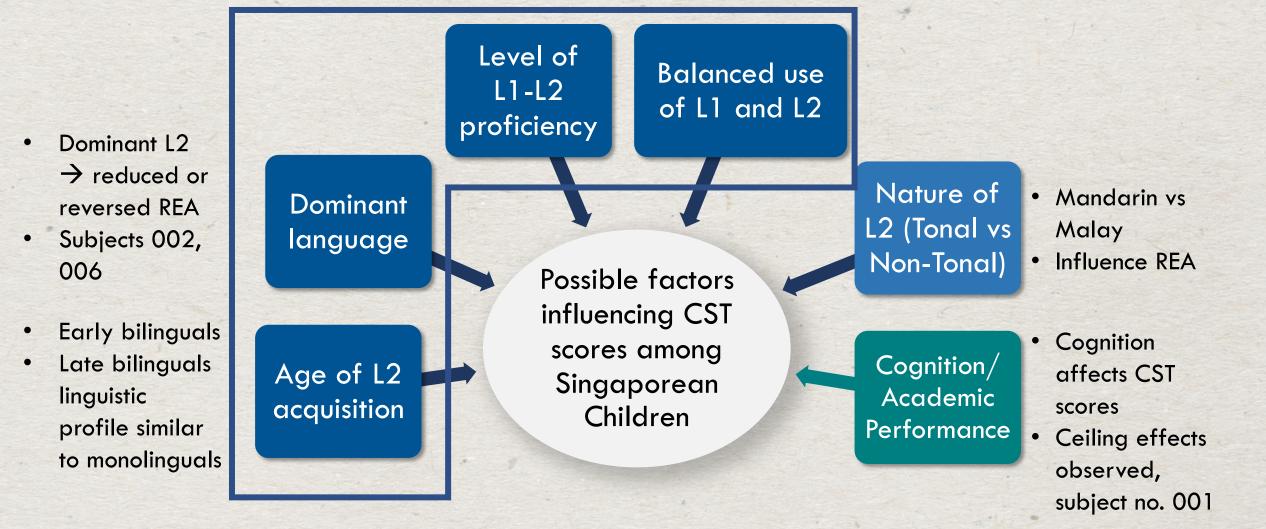
Subject No. 002

Profile	Male, 8;3 years old, Indian ethnicity, L2: Malay				
Language and Academic Bg	Below average - average student Dominant language is Malay language(L2), only started using English language (L1) when enrolled in school				
Screening Results	Basic Audiometry: Pass, AM Word: 99 th Percentile, AM Sentence: 63 th Percentile				
CST scores	SG_CST	Directed Left	80		
		Directed Right	75		
		REA	- 5		
	US_CST	Directed Left	32.5		
		Directed Right	37.5		
		REA	5		

Discussion

1. SG_CST > US_CST

Local children performed better in the SG_CST than US_CST, confirming known effects
of accent on speech-based tests


2. Variable difference in CST (△CST) performance and REA (SG_REA, US_REA)

- Suggests presence of probable confounds influencing degree of change/improvement when switched to SG_CST
 - Child's linguistic profile

 Linguistic variability expected in Singapore
 - Child's cognitive level
- 3. Performance of CST among multilinguals varies from monolinguals
- 4. Did not proceed with normative data development

Discussion

Suggested linguistic and Cognitive Parameters affecting CST scores

Study Limitations

- Limited sample size, no statistical analysis was done to compare the difference between SG_CST and US_CST scores
- Narrow age range (7 to 8 years old), limited study of the relation between REA and age as a surrogate measure of corpus callosum development
- Lack of objective measures of child's language and academic performance. Relied on semi-structured interview from parents and/or guardians

Future Studies

- Larger sample size
- Comprehensive screening battery of tests, assessment of:
 - Linguistic profile parameters
 - Academic and cognitive level screening
 - Auditory memory and attention screening tests
- Normative data

Acknowledgement

Heartiest gratitude to:

- My supervisor, Dr Jenny for closely guiding me throughout this thesis journey and for always providing me with support and giving me invaluable advice.
- All NUS MSc Audiology professors/ teaching faculty members including Dr Jennifer, Prof Billy, Maureen,
 Kimberly and NUS Audiologists for your patience in teaching me and mostly importantly for imparting me with Audiology knowledge and more.
- Edmund, for all the support provided and for spending extra hours in ensuring our thesis projects ran well.
- NUS Audiology Class of 2019 classmates, who have been a great pillar of support and companionship throughout these two years.
- My friends and family members, who have helped me in one way or the other in this thesis journey and otherwise.

References

- Bent, T., & Atagi, E. (2015). Children's perception of nonnative-accented sentences in noise and quiet. The Journal of the Acoustical Society of America, 138(6), 3985-3993.
- Ding, M. (2015). Adapting the Competing Sentences Test to the Singapore Population using Diotic Presentation A Pilot Study (Master of Science (Audiology)), National University of Singapore, Singapore
- Farah, R., Brown, D. K., & Keith, R. W. (2013). Developmental Central Auditory Processing Disorders Encyclopedia of Otolaryngology, Head and Neck Surgery (pp. 676-688): Springer.
- Luders, E., Thompson, P. M., & Toga, A. W. (2010). The development of the corpus callosum in the healthy human brain. *Journal of Neuroscience*, 30(33), 10985-10990.
- Mukari, S. Z., Keith, R. W., Tharpe, A. M., & Johnson, C. D. (2006). Development and standardization of single and double dichotic digit tests in the Malay language. *International Journal of Audiology, 45*(6), 344-352. doi:10.1080/14992020600582174
- Musiek, F. E., Bellis, T. J., & Chermak, G. D. (2005). Nonmodularity of the central auditory nervous system: implications for (central) auditory processing disorder. *American Journal of Audiology*, 14(2), 128-138.
- Newton, C., & Ridgway, S. (2016). Novel accent perception in typically-developing school-aged children. Child Language Teaching and Therapy, 32(1), 111-123.
- Rosenberg, G. (1998). Development of local child norms for the Dichotic Digits Test. Florida Journal of Communication Disorders, 18, 4, 10.
- Tomlin, D., & Rance, G. (2016). Maturation of the central auditory nervous system in children with auditory processing disorder. Paper presented at the Seminars in hearing.

Thank you!

www.phdcomics.com